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Calculating highly accurate thermochemical properties of condensed matter via wave-function-based ap-
proaches �such as, e.g., Hartree-Fock or hybrid functionals� has recently attracted much interest. We here
present two strategies providing accurate Hartree-Fock energies for solid LiH in a large Gaussian basis set and
applying periodic boundary conditions. The total energies were obtained using two different approaches,
namely, a supercell evaluation of Hartree-Fock exchange using a truncated Coulomb operator and an extrapo-
lation toward the full-range Hartree-Fock limit of a Padé fit to a series of short-range screened Hartree-Fock
calculations. These two techniques agreed to significant precision. We also present the Hartree-Fock cohesive
energy of LiH �converged to within sub-millielectron volt� at the experimental equilibrium volume as well as
the Hartree-Fock equilibrium lattice constant and bulk modulus.
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I. INTRODUCTION

The high-accuracy/cost ratio of Kohn-Sham density-
functional theory1,2 �KS-DFT� has been exhaustively demon-
strated in the literature. In its early days, KS-DFT using the
local-density approximation1 was almost exclusively applied
by the solid-state community. However, the advent of gener-
alized gradient approximations �see, e.g., Refs. 3–5� to the
exchange-correlation �XC� functional and the introduction of
nonlocal Hartree-Fock �HF� exchange in hybrid
functionals6,7 paved the way for reasonably accurate applica-
tions to molecules as well.

Within the framework of KS-DFT it is relatively easy to
achieve basis set convergence, and atomic forces can be cal-
culated at little extra computational cost. This is of para-
mount importance in the calculation of high-temperature dy-
namical and thermodynamic properties by molecular-
dynamics simulations. In particular, DFT statistical
mechanics for both bulk materials and for surface processes
is routinely feasible �see, e.g., Ref. 8, and references therein�.
The principle limitation of KS-DFT lies in the accuracy of
the applied XC functional.

Discussing examples for some shortcomings of KS-DFT,
it is well known that standard local and semilocal approxi-
mations to the XC functional do not yield accurate results for
quasiparticle band gaps of semiconductors and insulators.
Generally, they do not predict the correct adsorption sites and
adsorption energies of molecules on metallic surfaces �for
details see, e.g., Ref. 9, and references therein�. Today’s DFT
practitioner is confronted with these shortcomings when
choosing an XC functional for a specific application. Each
contemporary density functional has its relative merits but at
the same time drawbacks, which might impede finding an
appropriate XC functional. Different density functionals
have different merits and demerits, an unsatisfactory situa-
tion. These inadequacies of semilocal KS-DFT have stimu-
lated some DFT groups to use wave-function-based methods
to benchmark or correct DFT results. Note that other re-
searchers are directly applying wave-function-based tech-

niques to materials science problems �see, e.g., Ref. 10� us-
ing the CRYSTAL code but comparable assessments of the
therein implemented HF method close to the basis set limit is
still an open issue.

Dramatic improvements for many properties of molecules
as well as solids can be achieved by mixing a fraction of
nonlocal HF exchange �HFX� to the remaining part of
semilocal DFT exchange. Since these functionals do not only
depend on the electron density alone, but also on the KS
single-particle wave functions, i.e., the orbitals, they are
called hybrid functionals. Therefore, these hybrid functionals
can be seen as “mixed” wave-function-based and semilocal
DFT methods. We refer the reader to a recent review11 of
so-called screened hybrid functionals, as, e.g., the
Heyd-Scuseria-Ernzerhof12,13 �HSE� functional, which was
proposed to extend the successes of hybrid functionals into
condensed matter, by avoiding the problematic effects of
long-range �LR� HFX �see Ref. 11, and references therein�.

Besides the successes of screened HFX applied to con-
densed matter, the numerous methodological and algorithmic
developments in the quantum-chemistry community and the
steady increase in computers’ efficiency induced a drive to
conceive and implement even more involved wave-function-
based techniques, as, e.g., local second-order Møller-Plesset
perturbation theory �MP2�,14–16 �resolution of the identity�
atomic orbital Laplace transformed MP2 �Refs. 17–19� and
canonical MP2 �Refs. 20 and 21� for �infinitely� extended
systems of various dimensionality and applied basis func-
tions. Furthermore, recent reports in the literature on ab ini-
tio molecular dynamics on condensed matter22 employing
the HSE-screened hybrid functional illustrate that, depending
on implementation details, basis set and system, wave-
function-based techniques are also applicable to statistical
mechanics calculations. These successful applications of
wave-function methods to large systems show that they are
able to tackle materials science problems with possibly much
better accuracy than conventional density functionals.

Recently published HF and post-HF calculations on crys-
talline LiH have attracted much interest in the solid-state
community.23–25 These calculations represent a benchmark in
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terms of eliminating as many inaccuracies as possible while
attempting to converge toward the so-called HF limit. The
approach in question employs calculations on a hierarchical
series of cluster models,23,26 exploiting strengths and weak-
nesses of plane-wave pseudopotentials as well as local
Gaussian basis sets. Accurate evaluation of the total HF en-
ergy, as well as cohesive energy in the HF approximation
employing exclusively Gaussian basis sets is desirable to by-
pass errors incurred by the pseudopotential approximation.
Admittedly, creating an all-electron Gaussian basis set,
which describes the crystal as well as the isolated atoms
equally well, is challenging. Referring to the arguments of
Gillan et al.,24 it is in general difficult to provide rigorous
estimates how far the applied basis set is from the HF limit.
However, it is reasonable to question the need for reaching
the HF limit for particular materials properties, which is sub-
stantiated in the present work.

We compare total HF energies of solid LiH using two
different codes employing Gaussian basis functions: �i� the
Gaussian and augmented plane-wave27 code CP2K/QUICKSTEP

�Refs. 28 and 29� and �ii� a developmental version of the
GAUSSIAN suite of programs.30 We show that the cohesive
energy of the crystal is converged to within sub-millielectron
volt accuracy in our given large Gaussian basis set �see Table
I�. Computational and methodological details are presented
in Sec. II. Results for cohesive energies, theoretical lattice
constant as well as bulk modulus are in Sec. III. Conclusions
are drawn in Sec. IV.

II. COMPUTATIONAL DETAILS

In the following sections, we describe important compu-
tational details, such as the Gaussian basis set, the evaluation
of full-range HFX based on the short-range �SR� HFX
implementation31 in the GAUSSIAN suite of programs as well
as the method applied for the extrapolation of the SR-HFX
energy to the full-range limit based on Padé approximants.
Furthermore, implementation details on the direct evaluation
of HFX via the CP2K/QUICKSTEP code are presented.

A. Basis set

The basis set used for this calculation has been specifi-
cally constructed for the current purpose, which is an accu-
rate but computationally feasible HF calculation on bulk
LiH. The basis constructed here is similar to the polarization
consistent �pc� basis sets derived by Jensen.32–34 Jensen in-
troduced a sequence of quasioptimal basis sets �pc-�0–4��
that rapidly converge to the HF and DFT basis set limit.
The pc-3 basis set gives atomization energies with a mean
error smaller than 1 kJ/mol. For H and Li the pc-3
basis set has a composition 9s4p2d1f /5s4p2d1f and
14s6p2d1f /6s3p2d1f , respectively, while we adopt
8s3p2d1f /6s3p2d1f and 13s6p2d1f /11s5p2d1f . However,
the primitives of the basis employed here are nonstandard
and optimized for the present calculations.

In a first step, we have removed primitive Gaussians with
exponents smaller than 0.15 bohr−2 since diffuse basis func-
tions are technically troublesome. Diffuse functions, which

are needed to describe density tails in atoms or molecules,
are not needed in the bulk of densely packed solids with
large band gaps as the case of LiH. Indeed, we exploit the
fact that the basis functions on the lattice sites are available
for the expansion of any orbitals, be it the crystal orbitals in
the bulk or the atomic orbitals of the isolated atoms. This
basis is thus only suited for atomic or surface calculations if
ghost basis functions are left in the regular lattice positions
to appropriately describe the aforementioned tails of the elec-
tron density.

TABLE I. Details for the adopted basis sets for the compositions
8s3p2d1f /6s3p2d1f and 13s6p2d1f /11s5p2d1f of hydrogen and
lithium, respectively. Shown are angular momentum, Gaussian ex-
ponent, and corresponding contraction coefficients.

Species l Exponent Coefficient

H s 0.27463675�102 1.00000000

s 0.68559258�101 1.00000000

s 0.17679972�101 1.00000000

s 0.51181842 1.00000000

s 0.20167548 1.00000000

s 0.30797000�104 0.00023473

0.46152000�103 0.00182450

0.10506000�103 0.00959330

p 0.21240865�101 1.00000000

p 0.10736812�101 1.00000000

p 0.56838662 1.00000000

d 0.92833840 1.00000000

d 0.49583000 1.00000000

f 0.12073480�101 1.00000000

Li s 0.13360341�104 1.00000000

s 0.44429982�103 1.00000000

s 0.14779702�103 1.00000000

s 0.49209451�102 1.00000000

s 0.16428957�102 1.00000000

s 0.55293994�101 1.00000000

s 0.19052824�101 1.00000000

s 0.70025874 1.00000000

s 0.29958682 1.00000000

s 0.16636288 1.00000000

s 0.70681000�105 0.00000544

0.13594000�105 0.00003328

0.31004000�104 0.00019175

p 0.15709110 1.00000000

p 0.74875864 1.00000000

p 0.38614089 1.00000000

p 0.22620503 1.00000000

p 0.28500000�102 0.00036754

0.66400000�101 0.00322359

d 0.77920820 1.00000000

d 0.40789925 1.00000000

f 0.73706300 1.00000000
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In a second step, all but the core exponents have been
optimized by minimizing the energy of bulk LiH subject to a
restraint on the condition number of the overlap matrix. This
procedure is similar to the one employed for the molecularly
optimized basis sets described in Ref. 35. In CP2K, density
functionals that do not include Hartree-Fock exchange can
be computed in a highly efficient manner, and in order to
make this procedure computationally efficient, such a
semilocal density functional �B88 �Ref. 36�� has been em-
ployed in the optimization process. The resulting basis is
well conditioned, the condition number of the overlap matrix
is 2.8�104 for bulk LiH. We have estimated the accuracy of
the optimized basis by comparing to pc-4-like basis sets,
which for this system are only feasible with local DFT, and
estimate the total energy of bulk LiH �per unit of LiH� to be
well within 0.001 a.u. of the basis set limit, while the basis
set error on the cohesive energy is likely smaller than 0.1%
�0.0001 a.u.�. The details of this optimized basis set are sum-
marized in Table I.

B. Extrapolation of SR-HFX to full range (GAUSSIAN)

All Gaussian calculations presented in this work are based
on a very efficient implementation of the SR-HFX energy
exploiting a distance-based screening protocol.31 Using local
basis functions it is convenient to express the HFX energy
for closed shell as

Ex
HF = −

1

2 �
����

P��P���������g, �1�

where P�� are density-matrix elements and

�������g =� ��r1���r1�g�r12���r2���r2�dr1dr2 �2�

are the four-center electron repulsion integrals �ERIs�, repre-
sented in an atomic-orbital basis. The applied interaction po-
tential g�r12� is usually equal to the Coulomb kernel 1

r12
.

For large gap systems, it has been shown that local single-
particle wave functions as well as the corresponding density
matrix decay like e−h�r1−r2� for large �r1−r2�, where h is pro-
portional to �Egap, the square root of the band gap of the
system of question.37–40 This is the basic motivation behind
SR-HF as, e.g., used in the successful HSE hybrid
functional.12,13 HSE is based on a screened Coulomb inter-
action g�r12� splitting the conventional Coulomb kernel, 1

r12
,

into

1

r12
=

erfc��r12�
r12

SR

+
erf��r12�

r12

LR

,

�3�

where the LR and SR parts of the interaction are described
by the computationally convenient error function and its
complement, respectively. The parameter � in Eq. �3� deter-
mines the extent of the range separation of the Coulomb
interaction.

In view of the relatively large HF band gap of LiH �10.8
eV� �Ref. 41� and the fast decay of the density matrix, we

will calculate the total HF energy by doing a series of SR-HF
calculations at different �, and extrapolating to �→0. As
corroborated by numerical results shown in Sec. III, such an
extrapolation of the screened HF energies of the crystal to
the full-range HF limit in the specified basis set is numeri-
cally robust and reliable.

All calculations are based on a locally modified develop-
ment version of the GAUSSIAN electronic-structure
program.30 Hence, the total energies presented in Sec. III do
not include any DFT contributions. Only Hartree and
screened HFX energies are evaluated. The root-mean-square
�rms� convergence criterion for the density matrix in the self-
consistent-field �SCF� iteration was set to 10−7 a.u., which
implies an energy convergence no worse than at least
10−8 a.u. �GAUSSIAN keyword: SCF=tight�. Furthermore, a
24�24�24 mesh of k points was used, which is equivalent
to 6912 k points and thus all calculations are sufficiently
converged with respect to k points. The large band gap of
LiH in the HF approximation �see above� substantially helps
converging the k-point integration.

Following ideas found in the literature,42,43 we apply Padé
approximants of various orders to the obtained series of
screened HF energies. The actual form of the Padé approxi-
mants are the rational polynomials

p�x�
q�x�

=

�
i=0

n

pix
i

�
j=0

m

qjx
j

. �4�

Equation �4� represents the general expression of a Padé ap-
proximant of order �n /m�. Throughout this work only diag-
onal rational polynomials are applied,42,44 which means that
the order of the polynomial in the numerator equals the order
of the polynomial in the denominator. Note that the number
of parameters to be fitted is 2n+1 in the case of diagonal
polynomials. This is the minimum number of data points,
which must be included in the least-squares fit.

For all extrapolations employed in the present work, �
has been chosen to lie in the interval �0.04; 1.0�. In order to
put a higher weight to the area near to full-range HF we
decided to increment � by 0.005 up to 0.1 and increment �
by 0.01 up to a value that amounts to 0.2. For the remaining
interval of larger � values, the screening parameter was in-
cremented by 0.1. As a consequence, each fit is based on 31
data points, representing pairs of the screening parameter �
and the corresponding SR-HF energy.

The HF equilibrium lattice constant and bulk modulus
have been obtained by fitting the volume dependence of the
static lattice energy to the Murnaghan equation of state.45

The points were chosen in order to cover a range of �3%
around the supposed equilibrium lattice constant of 4.108 Å
�seven-points fit�.

C. HFX and periodic boundary conditions using Gaussian
basis functions

In hybrid functionals, which incorporate a fraction of non-
local HFX �Eq. �1��, the decay of the Hamiltonian matrix
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elements �see Sec. II of Ref. 46� with distance is determined
by two factors: �i� the decay behavior of the density matrix,
P��, and �ii� the decay behavior of the ERIs. For metallic as
well as insulating systems, a screened Coulomb interaction
accelerates the convergence of the ERIs in real-space drasti-
cally, i.e., the number of replica cells needed for convergence
is substantially decreased �see Refs. 47 and 48�. Fock ex-
change calculations involving the long-range tail of the Cou-
lomb interaction �e.g., in the �→0 limit, see Eq. �3�, in
long-range corrected hybrids or in global hybrids�, both the
density matrix and the ERIs influence the convergence of the
HFX energy.

It is a matter of fact, that due to the algebraic structure of
Eq. �1�, contributions to the HFX energy can be significant
even far from the central cell, precluding an early truncation
of the lattice sum �see Eq. 2.4 in Ref. 46�. Small exponent
basis functions involved in the calculation of the density ma-
trix become important factors determining the computational
workload. Calculations under periodic boundary conditions
involving SR-HFX with a reasonably large value for the
screening parameter � �Eq. �3�� are tractable for moderately
diffuse Gaussian basis functions, i.e., minimal exponent
equals 	0.2. Conventional HF or long-range HF calculations
are likely to be computationally prohibitive except for high-
exponent Gaussian basis sets. The relatively large and diffuse
basis set used in this work �see Table I� prevents calculating
the HFX at or close to �=0, i.e., the long-range limit for this
particular system in the given basis. As shown by the results
presented in Sec. III, a numerically stable fit to a sufficiently
large series of SR-HFX calculations is practicable to calcu-
late an accurate estimate for the HF energy of extended �in-
sulating� systems using large Gaussian basis sets. In sum-
mary, �=0 is not practical whereas a 31 point �
extrapolation works very well.

D. Direct calculation of HFX (CP2K)

The focus of CP2K is the simulation of complex systems
with a variety of methods. Recently, the capability to per-
form first-principles molecular-dynamics simulation with
density functionals including a fraction of Hartree-Fock ex-
change has been implemented and demonstrated for
condensed-phase systems containing a few hundred atoms.22

With this goal in mind, the implementation is massively par-
allel, focuses on in-core calculations, uses the � point only,
and does not exploit molecular or crystal symmetries. The
implementation was based on a minimum image
convention49 and employed a standard 1 /r Coulomb opera-
tor. The current implementation, which will be described in
detail elsewhere,50 goes beyond the minimum image conven-
tion, and instead employs a truncated Coulomb operator
which is defined as

g�r12� = 
 1

r12
, r12 	 Rc

0, r12 
 Rc.
� �5�

This operator was suggested by Spencer and Alavi51 to ob-
tain rapid convergence for the Hartree-Fock energy with re-
spect to the k-point sampling of the exchange energy in pe-

riodic systems. Note that the use of the truncated Coulomb
operator implies that the exchange energy is unconditionally
convergent for all k points. Furthermore, since exchange in
insulators is effective on shorter range compared to the elec-
trostatic interaction, results converge exponentially to the
Hartree-Fock limit as Rc is increased. In line with the results
presented in Ref. 51, we find that for a cubic cell with edge
L and Rc=L /2, converged results of the exchange energy can
be obtained using the � point only. Of course, this requires
that the computational cell is sufficiently large so that the
�-point approximation is acceptable, which in turn requires
that the extent of the maximally localized Wannier functions
is smaller than L /2. Consequently, the exchange energy com-
puted in CP2K is defined as

−
1

2�
i,j
� � �i�r�� j�r�g��r − r����i�r��� j�r��d3rd3r�, �6�

where �i are the wave functions at the � point. In the Gauss-
ian basis set employed, the exchange energy per cell is thus
obtained from

−
1

2 �
����

�
abc

P��P�����a��b�b+c�g, �7�

where �, �, �, and � are the indices of the basis functions in
the central cell, and a, b, and c run over all image cells. Due
to the rapid decay of the basis functions, sums over image
cells a and c converge quickly. The sum over b converges
quickly and unconditionally for our choice of g�r12�. Further
technical details, including how to compute efficiently and
accurately the required four center integrals ���a ��b�b+c�g
will be presented elsewhere.50

III. RESULTS

A. HF energy of LiH at experimental volume using Padé
approximants

Figure 1 depicts the obtained series of 31 data points of
screened HF energies for various values of �� �0.040;1.0�
�see Sec. II� calculated at the experimental lattice parameter.
The series of calculated energies clearly converges to a cer-
tain limit with decreasing �. At this point we remind the
reader that for the limit �→0 the SR Coulomb kernel given
in Eq. �3� approaches the full-range 1 /r operator. As shown
in Fig. 1 and outlined in Sec. II, the density of data points
increases significantly toward the �→0 limit. Table II pre-
sents results for several least-squares fits obtained using ra-
tional polynomials up to order 7. In addition, correlation co-
efficient r, rms deviation �rmsD� as well as relative rmsD,
which is normalized to the range of observed data, i.e., cal-
culated energies, are shown. Since r is very close to 1, we
decided to present in Table II �1−r�, where a value of zero
means perfect agreement between calculated data points and
fit.

Apparently, the rmsD as well as relative rmsD values de-
crease with increasing order of the rational polynomial ap-
plied to the fit. Rational polynomials of order 8 or beyond
�not shown in Table II� lead to unstable fits and the goodness
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of the fit deteriorates. According to Table II the optimal order
of the Padé approximant is �7/7�, which was used for all
extrapolations employed in this work.

As a next step we had to validate the �7/7� polynomial,
since it is well known, that algorithms for interpolation are
straightforward, whereas for extrapolation care must be
taken. A plausible strategy is simply the prediction of ener-
gies for a certain value of � not included in the fit. Table III
shows a series of predictions for screened HF energies for a
series of �’s starting from �=0.070 a.u.−1. The correspond-
ing screened HF energy has been estimated based on a �7/7�
fit using 24 data points, where �� �0.075;1.0�. As can be
seen from Table III, it is remarkable that the resulting error is

only one order of magnitude larger than the applied SCF
convergence criterion �see Sec. II�. The error for the pre-
dicted energies is practically converged after inclusion of
only one further data point and amounts to 3�10−7 a.u.
Hence, the error incurred by the fit to the Padé approximant
is much lower than the convergence threshold in the SCF
procedure. By virtue of the aforementioned validations it is
safe to give the total HF energy for a unit cell containing four
LiH ion pairs at experimental lattice constant �4.084 Å� with
a precision of five decimals in Hartree atomic units, which
amounts to −32.25817 a.u. The total HF energy per formula
unit at experimental lattice constant is given in Table IV and
compared with the HF energy obtained using CP2K. Both
values agree excellently to significant precision.

B. HF lattice constant and bulk modulus with GAUSSIAN

Figure 2 shows the seven-points fit of the obtained Padé
extrapolated HF energies to the Murnaghan equation of state
as outlined in Sec. II B. The rmsD value of this fit amounts
to 1.4�10−4. The resulting HF equilibrium lattice constant
of LiH equals 4.105 Å and is in excellent agreement with
the result obtained by Gillan et al. �see Table IV�. The cor-
responding bulk modulus of LiH amounts to 32.34 GPa,
which is again in very good agreement �0.9% deviation� with
the results obtained by aforementioned workers. Note that
bulk moduli are quite sensitive to the equilibrium volume at
which they are evaluated and overall good indicators for the
quality of the underlying energies at the various volumes.

C. Total and cohesive energy at experimental volume with
CP2K

Total energies have been computed for systems of in-
creasing system size by explicitly repeating the cubic unit
cell periodically in three dimensions. The largest cell em-
ployed is a 5�5�5 repetition of the basic cubic cell and
contains exactly 1000 atoms. For this system, 37 500 Gauss-
ian basis functions are used for the expansion of the molecu-
lar orbitals, which makes this a computationally demanding
simulation. With increasing system size, we also increase the
range of the truncated Coulomb operator, in steps of 2 Å up
to a maximum of 10 Å �see Table V�. The �-point approxi-
mation therefore converges quickly �exponentially� to the HF
limit of this system. We thus obtain from a direct calculation,
without extrapolation, an accurate estimate of the total en-
ergy per unit cell of approximately −32.258179 a.u. The
finite-size error on this result is estimated to be smaller than
50 �Eh. Furthermore, this number is in excellent agreement
with the Padé-extrapolated SR-HF results �−32.258171 a.u.,
Table II�, and thus provides numerical evidence for the qual-
ity of both approaches. Calculating the HF energy of the H
atom and the Li atom with the current basis set, in periodic
boundary conditions and retaining the basis functions of all
other atoms in the unit cell, we can obtain a consistent esti-
mate of the cohesive energy. In our approach, due to the fact
that unrestricted calculations are needed for the atoms, these
calculations are even more demanding than the bulk, and
have only been performed up to a 4�4�4 repetition of the
basis unit cell. Our best estimate for the cohesive energy,
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FIG. 1. �Color online� Convergence of the SR-HF energy �a.u.�
of a LiH unit cell containing four LiH ion pairs at experimental
lattice constant �4.084 Å� with decreasing screening parameter �
involved in the short-range Coulomb interaction. Gaussian results
for each � are represented by crosses. The line shows the �7/7� Padé
fit to the numerical data �see text for details�. The inset gives SR-HF
energies for �� �0;0.1� a.u.−1 as well as the extrapolated value for
�=0 in Hartree atomic units.

TABLE II. Results for the Padé fits to the 31 SR-HF energies
�a.u.� of LiH at experimental lattice constant �4.084 Å� for a cell
containing four LiH ion pairs. The first column shows the order of
the Padé polynomials representing them by the order of the poly-
nomial of the numerator and denominator, respectively �in squared
brackets�. The extrapolated total HF energy for the cell is given in
Hartree atomic units.

Fit �1-r� a rmsDb rmsD%c
E�HF�
�a.u.�

�1/1� 6.7�10−5 0.0185955 0.3654035 −32.3526129

�2/2� 5.7�10−8 0.0005666 0.0111347 −32.2472782

�3/3� 5.5�10−7 0.0018244 0.0358500 −32.2521383

�4/4� 2.0�10−10 0.0000364 0.0007156 −32.2585728

�5/5� 7.9�10−10 0.0000759 0.0014909 −32.2588628

�6/6� 1.5�10−9 0.0001109 0.0021803 −32.2576031

�7/7� 6.2�10−15 0.0000002 0.0000046 −32.2581712

ar: correlation coefficient �see text for details�.
brmsD: root-mean-square deviation.
crmsD%: normalized root-mean-square deviation.
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obtained from just three calculations �bulk LiH, and the at-
oms Li, H� without extrapolation, is −131.949 mEh. Also
here, the finite-size error is estimated to be smaller than
50 �Eh. This number is in excellent agreement with the best
estimate obtained by Gillan et al.24 −131.95 mEh.

It is noteworthy to comment on the calculated HF cohe-
sive energies of LiH obtained using the CRYSTAL code �see
Table IV�. As already mentioned in Sec. I, an assessment of
the HF method implemented in CRYSTAL close to the basis
set limit has not been published yet. However, in view of the
fact that all cohesive energies of LiH obtained using CRYS-
TAL are above the correct value, it appears that the Gaussian
basis sets used for the cohesive-energy calculations in Refs.
16 and 52 are too restricted to obtain a comparable high level
of accuracy to the one pursued in the present work. A com-
ment in Sec. 3.1 of Ref. 16 makes it appear unlikely that
calculations close to the HF limit will be feasible using the
current CRYSTAL code.

IV. CONCLUSIONS

The Hartree-Fock energy of solid LiH has been calculated
using large Gaussian basis sets. Two different approaches,

extrapolation of a Padé fit to a series of SR-HFX calculations
and direct calculation using a truncated Coulomb operator,
have been found to yield total energies that agree to better
than 0.1 mEh. Calculations of the cohesive energy, the equi-
librium lattice constant and the bulk modulus agree with the
best estimates available in literature. These results show that
robust and accurate calculations with nearly converged
Gaussian basis sets have now become possible in the con-
densed phase at least for large band gap systems. However,
we reiterate that the computational workload for both meth-
ods introduced in the present work is strongly dependent on
the decay properties of the density matrix. Thus, for e.g.,
small gap semiconductors it is very likely that extrapolation
of SR-HFX energies to full range would become difficult
whereas the truncated Coulomb operator approach will still
be robust enough to enable small gap materials being treated
on the HF level using large Gaussian basis sets. Certainly,
high-accuracy results ask for tailoring high-quality basis sets,
as the one introduced in this work. Clearly, finding the opti-
mal Gaussian basis set is certainly nontrivial and the degree
of complexity in this task increases with the complexity of
the material of interest. Finally, we stress that these results

TABLE III. Validation of the �7/7� Padé fit. The first column gives the number of data points �i.e., SR-HF
energies� included for a �7/7� Padé fit in order to predict the SR-HF energy corresponding to the � value
given in the second column. Deviations between calculated and fitted SR-HF energies are given in the fifth
and sixth column, respectively.

dp �
ESR-HF

�a.u.�
Efit

�a.u.� Error % error

24 0.070 −31.630779 −31.630965 −0.0001817 0.000574

25 0.065 −31.675185 −31.675183 0.0000010 −0.000003

26 0.060 −31.719533 −31.719533 0.0000003 −0.000001

27 0.055 −31.763998 −31.763998 0.0000003 −0.000001

28 0.050 −31.808571 −31.808571 0.0000003 −0.000001

29 0.045 −31.853244 −31.853244 0.0000003 −0.000001

30 0.040 −31.898007 −31.898007 0.0000004 −0.000001

TABLE IV. Summary of total HF energies per formula unit, HF
cohesive energies, equilibrium lattice constants, and bulk moduli of
LiH obtained using GAUSSIAN and CP2K. For comparison purpose,
results found in the literature are included.

E�HF�
�Eh�

�HF
coh

�mEh�
a0

�Å�
B

�GPa�

GAUSSIAN −8.064543a 4.105 32.34

CP2K −8.064545a −131.949a

CRYSTALb −129.14 4.121 28.3

CRYSTALc −130.16

VASPd −131.7 a

Gillan et al.e −131.95 a

Gillan et al.e −131.99 4.108 32.05

aCalculated at experimental lattice constant �4.084 Å�.
bReference 16.
cReference 52.
dReference 21.
eReference 24.
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FIG. 2. �Color online� Murnaghan equation of state �red/gray
line� for LiH obtained using the HF approximation. Each of the
seven points corresponds to the extrapolated least-squares fit of 31
screened HF energies to a Padé approximant of order �7/7� �see text
for details�.
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will contribute to the growing usefulness of hybrid density
functionals for condensed-phase applications and opens, for
these systems, the way to accurate calculations based on
post-Hartree-Fock methods.
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